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Surface Properties of the Three-Dimensional 
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Extending earlier work by us Badiali et al. [J. Phys. C: Solid State Phys. 16:2183 
(1983)] we give further evidence for the usefulness of using spherical boundaries 
to calculate the bulk and surface properties of the three-dimensional one- 
component plasma (OCP) by Monte Carlo. Results are reported for the density 
profile of a "charged" OCP and for the pair distribution function parallel to the 
surface of an "open" system and of a neutral OCP near a hard wall. The charge 
fluctuations are calculated. 
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relations; Monte Carlo simulations. 

1. INTRODUCTION 

In a previous publication (1) (hereafter referred to as I) we have demon- 
strated that the surface density profile of the one-component plasma (OCP) 
in a neutralizing background can be obtained from Monte Carlo (MC) 
calculations by confining ions and background to a spherical volume. Both 
the situations where the ions are in contact with an impenetrable wall and 
where they are confined by the background itself have been considered. 
The appropriateness of using spherical boundaries was inferred from the 
independence of the results on the system size and the existence of a large 
central region inside which the properties of the system (e.g., internal 
energy or pair distribution function) were identical to those of a homoge- 
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neous bulk system. Here we give further evidence for the suitability of using 
spherical boundaries by calculating the charge fluctuations in subregions of 
the system; in particular, it is shown that inside the central region of the 
system their behavior is that expected for a homogeneous bulk system. (2'3) 

The main purpose of this paper is, however, to report MC simulation 
results for the ionic density profile near a hard wall in a "globally charged" 
OCP and the two-body correlation functions of particles located at equal 
distance from the surface. By "globally charged" OCP we mean a system in 
which the charge of the ions exceeds the total charge of the background by 
an amount which is proportional to the surface S of the system. (If Qe is the 
excess charge we define o by Qe = eoS) .  

Jancovici ~4) has observed that, in the thermodynamic limit, a system 
with such an excess charge gives rise to the same surface layer structure as 
a system limited by a hard wall with a surface charge density - eo .  
Although a rigorous proof of this result exists only for the two-dimensional 
OCP at the special value F = fie z = 2 of the coupling constant, Ca) we expect 
it to be more generally valid for the two- and three-dimensional OCP at all 
couplings. 

By varying the system size, keeping o fixed, we show that for 
coupling constant F =  f l e 2 / a ~ 3 0  [f l  = 1 / k T  inverse temperature, a 
= (4~rp/3) -1/3, O density] about 600 particles are sufficient to produce 
density profiles close to their thermodynamic limit. These are compared 
with approximate theoretical predictions for the density profile near a 
charged plane hard wall. 

The calculation of the pair distribution function (p.d.f.) parallel to the 
surface gives insight into the modification of the structure in the layers near 
the surface and permits evaluation of the validity of approximating this 
structure by that of an equivalent two- or three-dimensional bulk fluid. 

Details of the MC computations are presented in Section 2, and the 
main conclusions are summarized in Section 3. 

2. MONTE CARLO CALCULATIONS 

We consider a system of N point ions (N = 329 and 679) of charge e 
enclosed in a spherical volume V of radius R w the surface of which is 
impenetrable to the ions. A uniform background with density OB and total 
charge opposite to the charge N e  of the ions occupies a concentric spherical 
volume of radius R 0. We shall deal with the following situations: 

(1) R w = R o. This choice is appropriate for studying the surface 
properties of a neutral system near a hard wall. 

(2) R w < R o. This choice has been made for studying the surface 
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properties of the ions in a charged OCP. Indeed, one immediately verifies 
that inside the volume of radius R w there is an excess charge 

N e -  4--E psR3e  = -~-pB(R 3 -  R 3 ) e  (1) 
e 

which, as outlined in the Introduction, we believe to give rise to a surface 
structure identical to that near a uniformly charged hard wall with surface 
charge density: 

(4~r/3)(Ro 3 - R~v )Ps e 

- oe = 4~rR 2w (2) 

For the 329-particle system we chose R w / R  o = 0.95 (excess charge of 15% 
of the total ionic charge). For the larger system (N = 679) R w was chosen 
to give the same "surface charge" density as for the 329-particle system. 
The value of o was kept fixed (oa 2 = 0.0868) for all couplings considered 
( r  = l, 10, 30). 

(3) R w >> R 0. This situation corresponds to an "open" system. The 
ions will be confined by the background itself. Note that the choice of a 
finite value for R w (typically R w ~ 4 R  o in our computations) is needed only 
in order to define unambiguously a thermodynamic limit (cf. I). 

2.1. Pair Distribution Function Parallel to the Interface 

We have calculated the p.d.f, gR (r) of two particles located between 
the distances R and R + AR of the center of the spherical volume compris- 
ing the system and separated by a distance r = RO, where 0 is the angle 
between the vectors joining the center of the volume to the particle 
positions. The value of AR is ~0.1a .  Two systems were considered: an 
"open" system at F = 1 and a neutral system near a hard wall at I" = 20. 
The results are depicted in Figs. 1 and 2, respectively, together with the 
corresponding density profiles and the bulk p.d.f, gn(r). For the "open" 
system, gR (r) does not differ notably from the bulk p.d.f, when the value of 
R increases (at least within the statistical uncertainty of the computations). 
In particular, no qualitative change in the p.d.f, occurs when R becomes 
larger than R 0 (ions outside the background). Of course, long and expensive 
computations would be necessary in order to obtain accurate values for 
gR(r) in the region R ~> 1.5R 0. 

Concerning the neutral system at F = 20, there is an obvious qualita- 
tive variation of gR (r) according to which R corresponds to a large or small 
value of the local density. The first peak in gR(r) is more (less) pronounced 
than the corresponding peak in the bulk p.d.f, when the local density is 
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Fig. 1. Pair distribution function gn(r) for particles equally distant from the surface of an 
open system at F = 1. Are shown also the bulk p.d.f, and the density profile. The values of R 
for which gR(r) is shown are marked by arrows on the density profile. The distance R is 
measured from the center of the spherical volume. The boundary of the background is located 
at Ro/a = 8.79. 

higher (lower) than the bulk density indicating the existence of a local order 
stronger (weaker) than in the bu l l  phase. 

The results lead to the obvious conclusion that the assumption gg(r) 
~gB(r) near the surface is certainly not valid for F > 10, and conse- 
quently, approximate theories for the density profile, based on this approxi- 
mation, will be in error for F > 10 (cf. I). 

A possible interpretation of the present results would be that, as 
noticed for uncharged systems, (5'6) gR(r) can be approximated, in the layer 
close to the wall and for r /a~l ,  by the p.d.f, of a homogeneous two- 
dimensional OCP, with 1 / r  interaction, at the value of F calculated using 
the local value of the density�9 Unfortunately, not sufficiently detailed MC 
results are presently available for this two-dimensional OCP to verify this 
hypothesis. At all events, gR(r) - 1 is likely to decrease, for large r, as l/r" 
(v dimensionality) (7) in marked contrast with the decay of the bulk p.d.f. 
Obviously, in our case, statistical uncertainties and the use of a spherical 
geometry preclude evaluation of the asymptotic behavior of gR(r). 
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S a m e  as  Fig.  1 b u t  fo r  a n e u t r a l  O C P  at  F = 20 n e a r  a h a r d  wal l  l oca t ed  a t  

Rw/a = 8.79. 

2.2. Density Profile near a Charged Hard Wall 

Monte Carlo results for the density profile of a charged OCP are 
shown in Figs. 3-5 for F = 1, 10 and 30, respectively�9 At I" = 1, comparison 
of the results for 329 and 679 particles shows that, if the excess charge is 
taken proportional to the surface, the density profile remains unchanged so 
that the thermodynamic limit seems already reached for the smaller system 
(N = 329). For the higher values of F considered, the 679-particle results 
are likely to be close to the thermodynamic limit. In that case we can 
legitimately compare the density profiles obtained from simulation with 
theoretical results pertinent to a OCP in contact with an infinite plane wall 
bearing a uniform charge density equal to - ae. 

The theoretical results we compare with (and which we shall denote 
H N C / M C )  are derived from an exact equation, first proposed by Lovett et 

al. (s) and Wertheim (9) (see also Ref. 10), for the one-particle distribution 
function: 

o(r) = f dr' c (r, r') Vr,P(r' ) Vrlog (3) 

in which the inhomogeneous two-body direct correlation function e(r, r') is 
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Fig. 3. Density profile of a charged OCP at r = 1 (oa 2 = 0.0868). Open circles: MC for 679 
particles; crosses: MC for 329 particles; solid line: theory (HNC/MC) .  The distance R is 
measured from the hard wall. 
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Fig. 4. Same as Fig. 3 but F = 10. 
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Fig. 5. Same as Fig. 3 but  F = 30. 

approximated by its bulk phase value c B (Ir - r']). The numerical solution of 
(3), using MC results (11) for c B ( I  r - r'l), follows exactly the lines given in I. 

From Fig. 3 it appears that for I" = 1, the density profile decays 
monotonically, MC and theoretical results are in quite good agreement, 
confirming the validity of approximating gR(r) by gn(r). For the higher 
couplings (F = 10 and 30) a layered structure is observed in the vicinity of 
the wall. Compared to the case of an uncharged wall (cf. I), the positions of 
the layers are notably shifted in the direction of the wall. The theoretical 
predictions reproduce the MC results only qualitatively. 

2.3. Charge Fluctuations 

In an equilibrium Coulomb system the mean square fluctuations ( Q 2~ 
in the net electric charge Q inside a subregion is proportional to the surface 
area of this region. (2) Similarly, the joint charge fluctuations ( QA QA2) in 
adjacent regions A 1 and A 2 grow as their common surface area. (3)' 

We have verified these relations by calculating the mean square 
fluctuations ( Q 2 )  in concentric spheres and the joint charge fluctuations 
(QA, QA2~ in adjacent concentric half-spheres of increasing radius R. 
Figure 6 shows ( Q 2) as a function of R 2 for an "open" system and for a 
globally charged system near a hard wall at F = 1. Up to R / a  ~ 7 which 
delimits the region inside which both systems are homogeneous (cf. density 
profiles on Figs. 1 and 3), the charge fluctuations are seen to vary linearly 
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Fig. 6. Mean square fluctuations (NA 2) - (NA)2/N of the number of ions N A contained in 
concentric spherical volumes of radius R plotted as a function of (R/a) 2 (N total number of 
ions in the system). Filled circles: "open" system at F = 1 [(Ro/a) 2 = 77.3]; crosses: charged 
OCP at s = l; open circles: charged OCP at F -- 30 [(Rw/a) 2 -- 71.4]; o a  2 = 0.0868. 

with surface area 4~rR 2. The average value of (Q2a2)/4~rR2e2 is 0.073 
___ 0.004 for an "open"  system and 0.073 + 0.003 for the charged system, in 
good agreement with the theoretical prediction for a homogeneous neutral 
bulk system: (2'3) 

Ka2 - l o~a2 f drr[ gB(r) - l ] = O.071+ O.O02 (4) 
e 2 4 

where gB(r) is the p.d.f, of the bulk OCP. The linear variation of ( Q 2 )  with 
surface area should be satisfied approximately as soon as the diameter of 
the spheres are larger than the Debye length [~D/a = 1/(3F)1/2], which is 
in accord with our findings. 

Beyond R / a  > 7 the systems are inhomogeneous and no theoretical 
interpretation is available any more�9 In the "open" system, the charge 
fluctuations inside the particular volumes we consider appear to settle to a 
constant value for R / a  > 9.5. In these regions the density profile decreases 
as 1 / R 2 (cf. I). 

( Q 2) has been further calculated for a charged system at F = 30 (cf. 
Fig. 6) and a neutral system near a hard wall at s = 20. In the regions of 
linear variation of ( Q 2 )  with surface area we find (Q2)a2/4~rR2e2= 
0�9 4-0.002 (F = 30) and 0.031 4- 0.002 (F = 20), respectively, in good 
agreement with the theoretical predictions for a bulk system 0.031 4- 0�9 
(F = 20). Similarly, the joint charge fluctuations in adjacent half-spheres 
give ((QA, QA2)/vrR2)(a2/e2) = - 0 . 0 3 1  _+0.004 for the neutral system 
near a hard wall at F = 20. 

These results again indicate that in the central region of our simulation 
sphere the system behaves as a bulk fluid, irrespective of the precise nature 
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of the surface boundary ("open" system, charged, or neutral OCP near a 
hard wall). 

3. CONCLUSION 

From the results of I and those reported here it follows that the 
boundary conditions used (spherical volume limited by a hard wall) are 
valid for simulating the one-component plasma. They permit to study both 
the bulk and surface properties in a same computation. Clearly, owing to 
the screening property of the Coulomb interaction, this type of boundary 
conditions could equally well be applied for studying ionic solutions, in 
particular the double-layer problem, thus avoiding the use of Ewald sums 
or the computation of a self-consistent interaction for taking into account 
the long-range part of the Coulomb interactions. (~a) 

The density profiles computed for a "charged" system give strong 
indication that, in the thermodynamic limit, this system and a neutral 
system in contact with a uniformly charged hard wall are equivalent for a 
three-dimensional OCP. 

Finally, the results obtained for the two-body distribution function 
gR(r) show that the correlations between particles at short distance 
(r/a~l) follow the variation of the local density and that, in order to 
obtain quantitative theoretical results for the density profile it is necessary 
to go beyond approximating the p.d.f, by its bulk value. 
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